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Abstract. We show that a voting scheme suggested by Lewis Carroll can be 
impractical in that it can be computationally prohibitive (specifically, NP-hard) 
to determine whether any particular candidate has won an election. We also 
suggest a class of "impracticality theorems" which say that any fair voting 
scheme must, in the worst-case, require excessive computation to determine a 
winner. 

1. Introduction 

We can consider a voting scheme to be a well-defined rule by which, given any input 
consisting of a set C of candidates and a set V of transitive preference orders on C 
(the preferences of the electorate), one can determine a subset of C whose elements 
are the winners (allowing for ties). When a voting scheme is considered to be a rule to 
determine the winner(s) of an election, it is natural to ask about the computational 
resources required by the scheme. For  example, can the scheme be guaranteed to 
identify a winner quickly ? In other words, is there an efficient algorithm to find a 
winner under the given voting scheme ? 

For both practical and theoretical reasons, an algorithm is considered formally 
efficient if it requires a number of computational steps that is at most polynomial in 
the size of the problem. Problems for which there are polynomial-time algorithms 
are generally considered to be tractable, and those which can require exponential 
time to solve are considered inherently intractable. 

* Presented at Purdue University, March 1987; at the University of Arizona, April 1987; at 
Massachusetts Institute of Technology, April 1987; at Yale University, November 1987; at Centre 
International de Rencontres Mathematiques, Marseille-Luminy, April 1988. This research was 
supported in part by Presidential Young Investigator Awards from the National Science Foundation to 
the first two authors (ECS-8351313 and ECS-8451032), and by grant N00014-86-K-0173 from the Office 
of Naval Research. 
** The authors thank the editor and three anonymous referees for many helpful suggestions. 
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Computational complexity can classify voting schemes based on a well-studied 
hierarchy of complexity classes that are thought to be distinct. For example, within 
this hierarchy is the problem class NP, which consists of those questions for which a 
"yes" answer can be justified in polynomial time. The hardest problems in NP are 
known as "NP-complete", and all such problems are equivalent in the sense that 
any problem in NP can be reworded as an instance of an NP-complete problem 
within polynomial time. Thus the existence for a polynomial-time algorithm to 
solve a single NP-complete problem implies that all problems in NP can be solved in 
polynomial time. That no one has found such an algorithm is taken as strong 
circumstantial evidence that NP-complete problems are inherently intractable. 
(For more on complexity and NP-completeness, see [7].) 

We will show that, for two voting schemes, several natural questions about the 
outcome of an election are NP-complete. This suggests that it is very unlikely that 
one can find an efficient algorithm to answer them. Thus these questions can be too 
difficult to answer (at least for "sufficiently large" elections without special 
structure), and so the voting schemes might be impractical. 

2. The Difficulty of Tabulating Scores 

We assume throughout that the preferences of all voters are strict (irreflexive and 
antisymmetric), transitive, and complete. We formalize as follows the essential 
question to be answered by any voting scheme. 

Election Winner 

Instance: Set of candidates C, and one distinguished member c of C; set V of 
preference orders on C. 

Question: Is c a winner under the specified voting scheme? 

In most historical voting schemes only polynomial time is required to answer 
this question (a practical necessity when counting paper ballots !). For example, to 
solve Plurality Winner requires only O(IVI + IC[) work to count first-place votes 
and identify the candidate with the most. It is unusual then to discover voting 
schemes that can apparently require exponential time to tell whether any particular 
candidate has won the election. We exhibit two such schemes. One was invented by 
the mathematician Charles Dodgson (better known as Lewis Carroll), and the other 
was suggested by J. Kemeny. We show that under a either a Dodgson election or a 
Kemeny election, it is NP-hard (that is, at least as hard as an NP-complete problem) 
to determine whether any particular candidate has won! Thus these schemes are 
capable of taking an impractically long time to determine a winner. Others have 
observed the empirical difficulty of computing winners under these schemes [for 
example, 6]. However, we establish this in a formal sense, and suggest computa- 
tional complexity as another aspect to be taken into consideration when practical 
voting schemes are to be judged. 

The rationality criterion that troubled Dodgson was the famous one first 
formalized by the Marquis de Condorcet [4], which requires that a voting scheme 
elect any candidate (the "Condorcet winner") that would defeat any other 
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candidate in a pairwise election with simple vote counts. Condorcet observed that 
there can be elections in which no candidate is a Condorcet winner (the 
"Phenomenon of Cyclic Majorities"). Accordingly, Dodgson sought a voting 
scheme that would still choose "rationally" in the absence of a Condorcet winner. 
He suggested the following voting scheme (reprinted at length in [3]; summarized in 
[13]). 

The Dodgson Voting Scheme 

A Dodgson winner is a candidate who is "closest" to being a unique Condorcet 
winner, where by "closest" we mean the following: Imagine that an election 
supervisor is empowered to change the ballot of any voter through pairwise 
interchange of candidates adjacent in the voter's preference order. Then a Dodgson 
winner is a candidate who requires the fewest interchanges to become a Condorcet 
winner. (Hereafter we will refer to such pairwise interchanges simply as "switches".) 
The minimum number of switches for a candidate to become a Condorcet winner is 
the Dodgson score of that candidate. A candidate with the smallest Dodgson score 
is a winner of the election.) 

As an example of the Dodgson scheme, consider the candidates A, B, C, D, and 
three voters, one with each of the preferences A > D > B > C, B > C > A > D, and 
C > A > D > B. Then the Dodgson score of A is 1, since switching C and A in the 
preference C > A > D > B is sufficient to make A the Condorcet winner, and no 
fewer switches will do so. Similarly, the Dodgson score of B is 2, since at least 2 
switches are necessary to beat both A and D, and this can be accomplished by 
switching B to the top of the preference A > D > B > C. The Dodgson score of C 
is 1, since C can be made to defeat B by a single switch within the preference 
B > C > A > D to become a Condorcet winner. Finally, the Dodgson score of D is 4 
since at least 3 switches are required to defeat A (one in each preference), and a 
additional switch is required for D to defeat C. Thus A and C tie for Dodgson 
winner of this election. 

Dodgson described a winner of the election, but did not specify an algorithm to 
identify a winner. We show that any conceivable algorithm to do this apparently 
must require excessive time, at least in the worst-case. 

In showing that it can be difficult to tell any candidate whether he has won the 
election, we develop two supporting lemmas. The first and key lemma says that it 
can be difficult to tell whether a candidate did well. We formalize this question as 

Dodgson Score 

Instance: Set of candidates C, and a distinguished member c of C; set V of 
preference orders on C; a positive integer K. 

Question." Is the Dodgson score of candidate c less than or equal to K? 

Lemma 1. Dodgson score is NP-complete. 

Proof First observe that Dodgson score is in NP, since a "yes" answer can be 
justified in polynomial time by identifying appropriate switches and tabulating the 
vote. 
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Now we contrive an election for which determining the winner entails solving 
Exact Cover by 3-Sets (X3C), which is known to be NP-complete [7]. 

Exact Cover by 3-Sets (J(3C) 

Instance: Set B with IB] = 3q and a collection S of 3-element subsets of B. 

Question." Does S contain an exact cover for B, i.e., a subcollection S '  of  S such that 
every element of  B occurs in exactly one member  of S ' ?  

First we define the set C of candidates: For each element b i of  B, create two 
corresponding candidates bl, and f~. Similarly, we create a candidate sj for each 
Sj in  S. 

Now we devise the set V of voters (which are identified with their preferences). 
V consists of  the following subsets: 

1. Swin9 Voters. Create voters corresponding to members of  S: For  each subset 
S j  = { b j l  , b j2 , bj3 } create a single voter (b jl > bj2 > b~3 > sj > c >. . . ) ,  where the entries 
after c are in arbitrary order. We call these voters "swing voters", since their votes 
will be crucial to the result of the election. Note that switching c up 1 position in such 
a preference order gains 0 votes against members of B; switching 2 times gains I 
vote; switching 3 times gains 2 votes; switching 4 times, so that c is at the very top of 
the preference order, gains 3 votes against members of B in pairwise elections. Thus, 
among swing voters, to get additional votes for c over members of  B requires at least 
4/3 switches per vote on the average, and to achieve this, any voter who switches at 
all must switch c upward 4 times, to the very top of his preference order. 

The swing voters are the means by which we embed X3 C in Dodgson Score. 
However we must pad the elctorate with additional voters to make sure that this 
embedding captures all the difficulty of  X3 C: 

2. Equalizin9 Voters. Let N~ be the number of  votes from swing voters that b~ would 
get in a pairwise election against c; let Nmax be the largest N~. For  each b~ create 
Nma~-N i additional (identical) voters ( b i > f ~ > c > . . . )  so that each b i would get 
exactly Nma~ votes in a pairwise elect!on against c. We call these "equalizing voters" 
since they make all the bi score equally well against c among swing voters and 
equalizing voters. Among equalizing voters, to get votes for c over members of  B 
requires at least 2 switches per vote on the average. 

3. Incremental Voters. Finally create a class of  identical voters (bl > ... >bib I 
> f l  > ..- >flBI > c > ...) sufficient in number so that any candidate b~ would defeat c 
by exactly 1 vote. Among incremental voters, to get votes for c over members of B 
requires at least 2 switches per vote on the average. 

Now that we have defined the election, consider whether c can be made a 
Condorcet winner by no more than 41BI/3 switches. I f  he can, c must convince the 
electorate to prefer him to each of the b~; but this requires at least 41B1/3 switches, 
and is achievable only if i) all switches are among swing voters, and ii) each swing 
voter makes 4 switches, to move c to the top of his preferences. But any set of  swing 
voters that can elect c by making no more than 41B[/3 switches corresponds to an 
exact 3-cover of B by members of S. [] 
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The second supporting lemma says that it can be hard to compare the scores of 
two candidates, which problem we formalize as 

Election Ranking 

Instance." Set of candidates C, and distinguished members c, c' of C; set V of 
preference orders on C. 

Question: Did c defeat c' in the election? 

Lemma 2. Dodgson ranking is NP-hard. 

Proof We use the construction from the proof  of Lemma I with the additional 
properties that the total number of voters is odd and there exists at least 1 equalizing 
voter. 

To get the total number of voters odd, it suffices to get IB[ odd and [SI even. IflB] 
is not odd, add 3 new artificial base elements, al,  a2, and a3, and add the set 
(al, s2, a3) to S. If S is not now even, choose any member of S and add another copy 
of it. If there are no equalizing voters in the election corresponding to this enlarged 
instance of X3 C, then choose any element of S and add 2 copies of it; this preserves 
the parity of S, and ensures the existence of at least 1 equalizing voter. These changes 
to the instance of X3 C are merely cosmetic, since whether there exists a 3-cover 
remains invariant under these modifications. 

Now enlarge the election by adding a new candidate c' to everyone's preference 
orders. To do this, first arbitrarily choose some equalizing voter v to be special. 
Divide the remaining voters into two arbitrary groups of equal size. All the voters in 
one group insert c' at the very top of their preferences; all the voters in the other 
group insert c' at the very bottom of their preferences. The special voter v inserts c' in 
position 1 +41B1/3 in his preference order. 

The Dodgson score of c' is no more than 4 IB I/3 : without the vote of v, c' must tie 
every other candidate in pairwise elections, so that making 41B1/3 switches to move 
c' to the top ofv's preferences will enable c' to defeat all the other candidates. On the 
other hand, the Dodgson score of c' must be at least 4 [B[/3 since at least that many 
candidates defeat him in pairwise elections (exactly those candidates preferred to 
him by v). Thus the Dodgson score of c' is exactly 41B1/3. The proof  now follows 
analogously to the proof  of Lemma 1. Thus Dodgson ranking is as hard as an NP- 
complete problem; but since we do not know whether Dodgson ranking is in NP, we 
can say only that it is NP-hard. [] 

Theorem 1. Dodgson winner is NP-hard. 

Proof. It is straightforward but tedious to pad the contrived election (from Lemmas 
1 and 2) with a polynomial number of additional voters so that c and c' (and no 
others) are tied for first place. [] 

We think Lewis Carroll would have appreciated the idea that a candidate's 
mandate might have expired before it was ever recognized. 
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3. Efficiency at the Cost of Universality 

The Dodgson scheme can be made at least formally efficient if we place an a priori 
restriction on the size of the elections in which it will be employed. For example, if 
we bound in advance the number of voters, then we can determine the Dodgson 
winner in polynomial time by enumeration: Any particular candidate c can be 
permuted to at most ICI different positions in the preference order of a voter, so 
there are at most I CI lvl possible ways of placing c in the preferences of  the electorate. 
We can count the number of switches implicit in each of these ways that lead c to be a 
Condorcet winner, and the fewest number of switches is the Dodgson score of c. 
Finally we can compare scores and choose the smallest. If IV] is bounded by a 
constant, then this procedure is technically polynomial-time (even though this 
might not be reassuring for large iV[). 

Similarly, if we bound in advance the number of candidates, the Dodgson 
scheme can be made to run in polynomial time by solving an integer linear program 
with a very large but fixed number of variables and constraints. The problem of 
determining the Dodgson score of candidate c can be formulated as an integer 
linear program in the following way. Index by i the types of preference orders found 
among the voters, and let N i be the number of voters of type i. Let xij be the number 
of voters with preferences of  type i for which candidate c will be moved upwards by j  
positions. Let e~j k be 1 if the result of moving candidate c b y j  positions upward in a 
preference order of type i is that c gains an additional vote against candidate k, and 0 
otherwise. Let d k be the deficit ofc  with respect to candidate k, that is, the minimum 
number of votes that c must gain against k to defeat him in a pairwise election. If c 
already defeats k, then d k = 0. Then the Dodgson score of c is the value of integer 
linear program. 

rain r-ijjxij subject to (3.1) 

r~jxij = N i (all types i of  preference orders) 

Zijei jkXij>dk (all candidates k) 

x~j > 0 , integer. 

The first set of constraints restricts the numbers and types of preferences to those 
actually present among the voters, and the second set of constraints ensures that c 
will become a Condorcet winner. The objective is to minimize the number of 
switches. 

The number of different types of voters (preference orders) is no greater than 
]CI!, and the number of different positions in any preference order is ]C[. 
Consequently there are no more than [CI x ([CI !) variables xij and no more than 
ICl!+[C] non-trivial constraints. If we limit the applicability of  the Dodgson 
scheme by restricting IC[ to be no larger than some prespecified number, (3.1) is 
polynomially solvable, at least by the algorithm of Lenstra [12], for which the time 
bound, though potentially enormous, is technically a polynomial. 

The effort required to determine a Dodgson winner appears to increase more 
quickly as a function of IC[ than as a function of[ VI. Even in real elections ICI can be 
large enough to make the Dodgson scheme potentially impractical : the N e w  York  
Times  of I April 1986 reported 20 candidates for mayor of Tulsa, Oklahoma! 
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4. An "Impracticality Theorem" 

Kemeny [10, 11] has suggested another voting scheme that extends the Condorcet 
principle. He defined the outcome of an election to be a consensus ranking of the 
alternatives, and suggested that the consensus be a preference order that minimizes 
the sum of "distances" to the preferences of the voters. We show that it can be 
difficult to determine the outcome of an election under Kemeny scoring. As a 
corollary we conclude that every voting rule that satisfies certain modest fairness 
criteria must be inefficient at determining a winner. 

(We thank the editor and referees for pointing out that the difficulty of scoring a 
Kemeny election has been independently established by others, including J. Odin 
(private correspondance), and, most notably, Wakabayashi [16], who compre- 
hensively analyzed the complexity of median and mean procedures. In addition, the 
complexity of related problems has been discussed elsewhere (for example [1], [8]).) 

Kemeny defined the "distance" between two preferences P and P '  as 
dist (P, P ' )  = Zd(j,  k), where the sum is taken over all unordered pairs of candidates 
j and k, and where d(j, k) = 0 if P and P '  agree on candidatesj and k; d(j, k) = 2 if P 
prefers j to k but P' prefers k to j ;  and d(j, k) = 1 if P prefers j to k but P' is 
indifferent between j and k. A Kemeny consensus is a preference that minimizes 
ZNi dist (P, Pi), where Ni is the number of voters with preference Pi. 

We will need the following technical result, which enables us to consider only 
strict preferences. 

Lemma 3. I f  all voter preferences are strict, then there exists some Kemeny consensus 
that is strict. 

Proof. Let P be a Kemeny consensus that includes ties (indifference), and consider 
any set T of candidates that are mutually tied under P. Let c be any candidate in T 
and compute A---Z ]{voters who prefer c to d}] and B = Z ]{voters who prefer d to 
c}[, where the sums are taken over all d in T. If A > B, then the Kemeny score of P 
could be improved by breaking ties in favor of c; similarly, if A < B, the Kemeny 
score could be improved by preferring the remaining candidates of T to c. But since 
P is a Kemeny consensus, its score must be minimum, so that A = B. Finally, since A 
= B, we can break ties arbitrarily in favor of c to produce a new preference order 
with fewer ties, but with the same minimum Kemeny score. Repeated application of 
this produces a Kemeny consensus with no ties. [] 

Theorem 2. Kemeny score is NP-complete, and Kemeny ranking and Kemeny winner 
are NP-hard. 

Proof. Kemeny score is in NP since the score of any candidate can be computed in 
polynomial time. 

We show the problem is hard by showing that the following problem, which is 
known to be NP-complete [7], can be polynomially transformed to it. 

Feedback Arc Set 

Instance." Directed graph G, with vertices C; positive integer K. 
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Question." Is there a subset of no more than K arcs which includes at least one arc 
from every cycle in G ? 

For any instance of Feedback Arc Set, interpret G as representing the outcomes 
of pairwise contests between candidates C. By [15], G is realizable by a set V of 
voters for wich I VI is even and "small" (polynomial in ICI), whose preferences are 
all strict, and whose preferences decide each contest by exactly 2 votes. Thus, for 
any arc (i,j) of G, exactly (I VI + 2)/2 voters prefer candidate i to j, and (1V[-2)/2 
voters prefer candidatej to i. Therefore any strict preference P must disagree with at 
least (I VI - 2)/2 voters on the relative ranking of candidates i and j, and so must incur 
a "fixed-cost" of (1V1-2) to its Kemeny score. If P disagrees with the majority of 
voters and prefers j to i, then there is an additional penalty of (2 voters)(2 
points/voter)=4 points. Since this holds for each of the IVl(lVl-1)/2 pairs of 
candidates, the Kemeny score of P must be at least I VI (I V] - 1) ([ V1-2)/2, plus 4 
times the number of contests in which P disagreed with the majority. 

Now consider the question whether there exists a consensus whose Kemeny 
score is no larger than [Vl(IV-1l)(IV1-2)/2)+4K. By Lemma 3, the answer is 
"yes" if-and-only-if there exists a strict preference with the same Kemeny score. By 
construction, a strict consensus with this score must agree with the majority on all 
but K of the pairwise contests, and the arcs corresponding to these pairwise contests 
are a feedback arc set for G. Therefore Kemeny score is NP-complete. 

As for the Dodgson scheme, the election can be padded to establish that Kemeny 
rankin9 and Kemeny winner are both NP-hard. [] 

Now we reword Theorem 2 in a provocative way. Following [17] we define a 
voting scheme to be neutral if it is symmetric in its treatment of candidates; to be 
Condorcet if it elects any Condorcet winner; to be consistent if, when two disjoint 
subsets of the electorate, voting separately, arrive at the same consensus, then their 
voting together always produces this same consensus. Young and Levenglick [17] 
proved that Kemeny scoring is the unique voting scheme that is neutral, consistent, 
and Condorcet. Hence we have the following. 

Corollary. Under any votin9 scheme that is neutral, consistent, and Condorcet, the 
Winner Problem is NP-hard. 

Since only the Kemeny rule satisfies the hypotheses, this corollary is not entirely 
satisfying. Nevertheless, it can be taken as a model for a new type of impossibility 
theorem (that might be called an "impracticality theorem"), the general form of 
which is "Fair elections are impractical". Are there stronger versions of this 
theorem? 

5. Conclusions 

Many theorems and some practical experience attest that any conceivable voting 
scheme is capable of some form of unacceptable behavior, such as violating for- 
malized notions of fairness or rationality (for example [5, 9, 13]; summary in [14]). 
We remark that the computational complexity of the corresponding elect io n winner 
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problem is also an important aspect one should consider when judging voting 
schemes. 

It seems desirable for a voting scheme to be dependably quick in its decisions. It 
would be interesting to explore the extent to which this is reconcilable with notions 
of fairness. In particular, do there exist more potent impracticality theorems than 
the one we offer? 

In addition, there are other computational aspects of voting to be explored. For 
example, elsewhere we have exhibited a voting scheme that is easy to operate, but is 
computationally resistant to manipulation [2]. 
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